Archive

Archive for the ‘Interesting Info’ Category

Emotions, Body Heat, & Emoting

May 24, 2014 Leave a comment

Body Heat & Emoting

Advertisements

Simply Astounding!

May 21, 2014 Leave a comment

Reading - Astounding!

Are You Getting Enough Sleep?

April 30, 2014 Leave a comment

April, 2014

Centers For Disease Control and Prevention

Sleep is important for people of all ages to stay in good health. (See below to learn how much sleep your body needs.)

How you feel and perform during the day is related to how much sleep you get the night before. If sleepiness interferes with your daily activities, more sleep each night will improve the quality of your waking hours. Unfortunately, recent statistics show up to 40% of adult Americans experience a sleeping problem one or more nights a week on a regular basis.

Insufficient sleep is associated with a number of chronic diseases and conditions—such as diabetes, cardiovascular disease, obesity, and depression—which threaten our nation’s health. Not getting enough sleep is associated with the onset of these diseases and also may complicate their management and outcome.

Sufficient sleep is increasingly being recognized as an essential aspect of chronic disease prevention and health promotion. How much sleep is enough? Sleep needs vary from person to person and change as people age. Consider these sleep guidelines for different age groups.

Newborns

* 16-18 hours

Preschool-aged Children

* 11-12 hours

School-aged Children

* At least 10 hours

Teens

* 9-10 hours

Adults (including older adults)

* 7-8 hours

*Data from the National Institutes of Health.

Simple Steps to Improve Falling and Staying Asleep

* Go to bed at the same time each night, and rise at the same time each morning.

* Sleep in a quiet, dark, and relaxing environment, which is neither too hot nor too cold.

* Make your bed comfortable and use it only for sleeping and not for other activities, such as reading, watching TV, or listening to music.

* Remove all TVs, computers, and other “gadgets” from the bedroom.

* Avoid large meals before bedtime.

Ten Word Thursday

April 24, 2014 Leave a comment

Starting today, Thursdays are for expanding our vocabulary.

Thus, Ten Word Thursday.

Today’s word: Expanding

Ten synonyms:

Broaden

Burgeon

Enlarge

Amplify

Elaborate

Magnify

Multiply

Piggyback

Protract

Unravel

Can you use these words in a sentence, a paragraph, a thought?!

 

See you next week. . .

Restoring Order in the Brain

March 13, 2014 Leave a comment

(Reprint from Neuroscience News)

Alzheimer’s disease is the most widespread degenerative neurological disorder in the world. Over five million Americans live with it, and one in three senior citizens will die with the disease or a similar form of dementia. While memory loss is a common symptom of Alzheimer’s, other behavioral manifestations — depression, loss of inhibition, delusions, agitation, anxiety, and aggression — can be even more challenging for victims and their families to live with.

Now Prof. Daniel Offen and Dr. Adi Shruster of Tel Aviv University’s Sackler School of Medicine have discovered that by reestablishing a population of new cells in the part of the brain associated with behavior, some symptoms of Alzheimer’s disease significantly decreased or were reversed altogether.

The research, published in the journal Behavioural Brain Research, was conducted on mouse models; it provides a promising target for Alzheimer’s symptoms in human beings as well.

“Until 15 years ago, the common belief was that you were born with a finite number of neurons. You would lose them as you aged or as the result of injury or disease,” said Prof. Offen, who also serves as Chief Scientific Officer at BrainStorm, a biotech company at the forefront of innovative stem cell research. “We now know that stem cells can be used to regenerate areas of the brain.”

Restoring Order in the Brain

Researchers discovered that by reestablishing a population of new cells in the part of the brain associated with behavior, some symptoms of Alzheimer’s disease significantly decreased or were reversed altogether. Credit ADEAR/NIA

Speeding up recovery

After introducing stem cells in brain tissue in the laboratory and seeing promising results, Prof. Offen leveraged the study to mice with Alzheimer’s disease-like symptoms. The gene (Wnt3a) was introduced in the part of the mouse brain that controls behavior, specifically fear and anxiety, in the hope that it would contribute to the formation of genes that produce new brain cells.

According to Prof. Offen, untreated Alzheimer’s mice would run heedlessly into an unfamiliar and dangerous area of their habitats instead of assessing potential threats, as healthy mice do. Once treated with the gene that increased new neuron population, however, the mice reverted to assessing their new surroundings first, as usual.

“Normal mice will recognize the danger and avoid it. Mice with the disease, just like human patients, lose their sense of space and reality,” said Prof. Offen. “We first succeeded in showing that new neuronal cells were produced in the areas injected with the gene. Then we succeeded in showing diminished symptoms as a result of this neuron repopulation.”

“The loss of inhibition is a cause of great embarrassment for most patients and relatives of patients with Alzheimer’s,” said Prof. Offen. “Often, patients take off their pants in public, having no sense of their surroundings. We saw parallel behavior in animal models with Alzheimer’s.”

Next: Memory

After concluding that increased stem cell production in a certain area of the brain had a positive effect on behavioral deficits of Alzheimer’s, Prof. Offen has moved to research into the area of the brain that controls memory. He and his team are currently exploring it in the laboratory and are confident that the results of the new study will be similar.

“Although there are many questions to answer before this research produces practical therapies, we are very optimistic about the results and feel this is a promising direction for Alzheimer’s research,” said Prof. Offen.

Secure Communications Thanks to Quantum Physics

March 12, 2014 Leave a comment

By: Christian J. Meier


 

One of the recent revelations by Edward Snowden is that the U.S. National Security Agency is currently developing a quantum computer. Physicists aren’t surprised by this news; such a computer could crack the encryption that is commonly used today in no time and would therefore be highly attractive for the NSA.

Professor Thomas Walther of the Institute of Applied Physics at the Technical University of Darmstadt is convinced that “Sooner or later, the quantum computer will arrive.” Yet the quantum physicist is not worried. After all, he knows of an antidote: so-called quantum cryptography. This also uses the bizarre rules of quantum physics, but not to decrypt messages at a record pace; quite the opposite — to encrypt it in a way that cannot be cracked by a quantum computer. To do this, a “key” that depends on the laws of quantum mechanics has to be exchanged between the communication partners; this then serves to encrypt the message. Physicists throughout the world are perfecting quantum cryptography to make it suitable for particularly security-sensitive applications, such as for banking transactions or tap-proof communications. Walther’s Ph.D. student Sabine Euler is one of them.

As early as the 1980s, physicists Charles Bennett and Gilles Brassard thought about how quantum physics could help transfer keys while avoiding eavesdropping. Something similar to Morse code is used, consisting of a sequence of light signals from individual light particles (photons). The information is in the different polarizations of successive photons. Eavesdropping is impossible due to the quantum nature of photons. Any eavesdropper will inevitably be discovered because the eavesdropper needs to do measurements on the photons, and these measurements will always be noticed.

“That’s the theory” says Walther. However, there are ways to listen without being noticed in practice. This has been demonstrated by hackers who specialize in quantum cryptography based on systems already available on the market. “Commercial systems have always relinquished a little bit of security in the past,” says Walther. In order to make the protocol of Bennett and Brassard reality, you need, for example, light sources that are can be controlled so finely that they emit single photons in succession. Usually, a laser that is weakened so much that it emits single photons serves as the light source. “But sometimes two photons can come out simultaneously, which might help a potential eavesdropper to remain unnoticed” says Walther. The eavesdropper could intercept the second photon and transmit the first one.

Therefore, the team led by Sabine Euler uses a light source that transmits a signal when it sends a single photon; this signal can be used to select only the individually transmitted photons for communication. Nevertheless, there are still vulnerabilities. If the system changes the polarization of the light particles during coding, for example, the power consumption varies or the time interval of the pulses changes slightly. “An eavesdropper could tap this information and read the message without the sender and receiver noticing” explains Walther. Sabine Euler and her colleagues at the Institute of Applied Physics are trying to eliminate these vulnerabilities. “They are demonstrating a lot of creativity here” says Walther approvingly. Thanks to such research, it will be harder and harder for hackers to take advantage of vulnerabilities in quantum cryptography systems.

The TU Darmstadt quantum physicists want to make quantum cryptography not only more secure, but more manageable at the same time. “In a network in which many users wish to communicate securely with each other, the technology must be affordable,” he says. Therefore, his team develops its systems in such a manner that they are as simple as possible and can be miniaturized.

The research team is part of the Center for Advanced Security Research Darmstadt (CASED), in which the TU Darmstadt, the Fraunhofer Institute for Secure Information Technology and the University of Darmstadt combine their expertise in current and future IT security issues. Over 200 scientists conduct research in CASED, funded by the State Initiative for Economic and Academic Excellence (LOEWE) of the Hessian Ministry for Science and the Arts. “We also exchange information with computer scientists, which is very exciting,” says Walther.

After all, the computer science experts deal with many of the same issues as Walther’s quantum physicists. For example, Johannes Buchmann of the department of Computer Science at the TU Darmstadt is also working on encryption methods that theoretically cannot be cracked by a quantum computer. However, these are not based on quantum physics phenomena, but rather on an unsolvable math problem.

Therefore, it may well be that the answer to the first code-cracking quantum computer comes from Darmstadt.

Bizarre quantum physics and encryption

A quantum computer could quickly crack current encryptions because it can test very many possibilities simultaneously, in the same way as if you could try all possible variations for a password at once. After all, according to the quantum physics principle of superposition, atoms, electrons or photons can have several states simultaneously; for example, they can rotate clockwise and counterclockwise at the same time.

However, if you were to measure a property of a particle, such as the direction of rotation, the superposition is lost. This phenomenon is useful for quantum cryptography. Eavesdroppers inevitably betray themselves because their measurements of the photon change the photon’s characteristics. Moreover, quantum physics forbids them to copy the photon with all its properties. Therefore, they cannot siphon off any information to retransmit the uninfluenced photons on to the sender of the message.


Need a New Heart, We Can Print It!

February 12, 2014 Leave a comment

New Advance in 3-D Printing and Tissue Engineering Technology

 Date: February 10, 2014

Source: Brigham and Women’s Hospital

Summary: Researchers have introduced a unique micro-robotic technique to assemble the components of complex materials, the foundation of tissue engineering and 3-D printing.

Described in the Jan. 28, 2014, issue of Nature Communications, the research was conducted by Savas Tasoglu, PhD, MS, research fellow in the BWH Division of Renal Medicine, and Utkan Demirci, PhD, MS, associate professor of Medicine in the Division of Biomedical Engineering, part of the BWH Department of Medicine, in collaboration with Eric Diller, PhD, MS, and Metin Sitti, PhD, MS, professor in the Department of Mechanical Engineering, Carnegie Mellon University.

Tissue engineering and 3D printing have become vitally important to the future of medicine for many reasons. The shortage of available organs for transplantation, for example, leaves many patients on lengthy waiting lists for life-saving treatment. Being able to engineer organs using a patient’s own cells can not only alleviate this shortage, but also address issues related to rejection of donated organs. Developing therapies and testing drugs using current preclinical models have limitations in reliability and predictability. Tissue engineering provides a more practical means for researchers to study cell behavior, such as cancer cell resistance to therapy, and test new drugs or combinations of drugs to treat many diseases.

The presented approach uses untethered magnetic micro-robotic coding for precise construction of individual cell-encapsulating hydrogels (such as cell blocks). The micro-robot, which is remotely controlled by magnetic fields, can move one hydrogel at a time to build structures. This is critical in tissue engineering, as human tissue architecture is complex, with different types of cells at various levels and locations. When building these structures, the location of the cells is significant in that it will impact how the structure will ultimately function. “Compared with earlier techniques, this technology enables true control over bottom-up tissue engineering,” explains Tasoglu.

Tasoglu and Demirci also demonstrated that micro-robotic construction of cell-encapsulating hydrogels can be performed without affecting cell vitality and proliferation. Further benefits may be realized by using numerous micro-robots together in bioprinting, the creation of a design that can be utilized by a bioprinter to generate tissue and other complex materials in the laboratory environment.

“Our work will revolutionize three-dimensional precise assembly of complex and heterogeneous tissue engineering building blocks and serve to improve complexity and understanding of tissue engineering systems,” said Metin Sitti, professor of Mechanical Engineering and the Robotics Institute and head of CMU’s NanoRobotics Lab.

“We are really just beginning to explore the many possibilities in using this micro-robotic technique to manipulate individual cells or cell-encapsulating building blocks.” says Demirci. “This is a very exciting and rapidly evolving field that holds a lot of promise in medicine.”

___________________________

Brigham and Women’s Hospital. “New advance in 3-D printing and tissue engineering technology.” ScienceDaily. ScienceDaily, 10 February 2014.